
A Web-Based Approach
to Interactive Visualization in Context

Audris Mockus and Stacie Hibino
Bell Labs, Lucent Technologies

263 Shuman Boulevard
Naperville, IL 60566 USA

{audris, hibino}@research.bell-labs.com

Todd Graves
Statistical Sciences Group

MS F600, Los Alamos National Laboratory
Los Alamos, NM 87545 USA

tgraves@lanl.gov

ABSTRACT
This paper proposes a framework for easily integrating and
controlling information visualization (infoVis) components within
web pages to create powerful interactive “live” documents, or
LiveDocs. The framework includes a set of infoVis components
which can be placed and linked within a standard HTML
document, initialized to focus on key analysis results, and directly
manipulated by readers to explore and analyze data further. In
addition, authors can script the manipulation of views at the user
interaction level (e.g., to set view options, select items within a
view, or animate a view). We illustrate our approach with a
sample analysis of a real-life data set.

Keywords
web-based information visualization, live documents, authoring
visualization web pages

1. INTRODUCTION
Advances in Java and WWW browsers are making it possible for
web-based information visualization (infoVis) to become a reality.
Today, it is practical for WWW versions of scientific publications
to allow their readers to interact with, rather than just review,
visualizations of data analysis results. Such interactive documents
can present graphical results in context as in a static, hardcopy
publication while at the same time providing an interface for
directly accessing and analyzing the data first-hand. In this way,
readers can confirm or disprove the author’s results as well as
explore the data in search of additional insights. We refer to this
type of interactive document with embedded, contextual
information visualization components as a Live Document [4], or
LiveDoc, for short. In this paper, we present a new set of LiveDoc
principles that, based on our experience, make them effective
presentation tools. We also provide technical details on the
authoring of LiveDocs.

Two primary obstacles stand in the way of the realization of the
LiveDoc paradigm. First, LiveDocs are far harder to compose than

traditional static documents: most prospective LiveDoc authors
would need to learn a new programming language and design a
user interface through which their audiences can manipulate the
data, when they would prefer to focus on the research content of
their documents. Second, some LiveDoc readers will have neither
the time for, nor the interest in, the deeper explorations that the
interactivity allows. The LiveDoc author risks losing this audience
altogether, particularly if the user interface requires too much time
to learn, if it takes too long to access the data, or if the LiveDoc
seems too radical a departure from their static document
expectations. What is required is a way to aid authors in efficiently
creating more effective interactive documents.

One approach to authoring online infoVis documents involves
using (or, more likely, re-implementing) existing visualization
technology. Although progress is still needed to increase the
efficiency and scalability of infoVis on the WWW, several web-
based infoVis applets and applications are emerging for analyzing
data such as up-to-date financial or geographical data online (e.g.,
[11], [9]). Currently, however, most web-based interactive
visualizations focus more on sophisticated, domain-specific views
and several appear more like stand-alone applications that happen
to be accessible through a web browser. Thus, such visualizations
can be limited to their own domains, and they may potentially
force users to experience long delays downloading complex
visualizations. In addition, such views are not designed for
distribution in a static form, and they may require users to spend a
fair amount of time learning the system before the users can start
to gain insight from their data.

In designing our approach to LiveDocs, we address these
obstacles by using simple, flexible data visualization components
which are easily embedded in standard web documents. In
addition, we increase the analytic power of these simple
components by allowing authors to easily link them together.
Currently available sample components include bar charts,
smoothed histograms, and dynamic tables (a form of Rao and
Card’s Table Lens [10], an enhanced spreadsheet-like view).

Our flexible and simple components greatly reduce readers’
learning time required for interacting with the views, especially
when authors use HTML controls to automate recommended
tasks. The domain-independent nature of our views lets authors
use them in different contexts and allows readers to transfer their
learning about the views to subsequent LiveDocs. Our LiveDoc
framework provides a tailorable (see, for example, [5], [2]) and
in-context user interface where only the functionality pertinent to

Published in Advanced Visual Interfaces (AVI’2000)
Conference Proceedings (pp. 181-188).

Copyright © 2000 by ACM.

the presentation is exposed to the user. The conventional interface
in the form of HTML links or HTML form widgets is provided in
the appropriate location in the document, along with instructions
and suggestions for their use. Placing interactive tools within the
text is in the spirit of the concept of illustrations appearing in
context, exemplified by [12]. Another advantage is that readers
can easily and fruitfully read our documents as if they were
ordinary static documents, since our components can be set to
appropriate initial states to appear just like illustrations and tables
in an ordinary document. Finally, despite the simplicity of
individual views, they can be easily linked together to achieve
substantial analytic power, see, for example [13].

Together with these advantages, our approach also allows for
efficient authoring of online documents: web page authors can
easily embed powerful visual presentations within the context of
their documents through a standard applet interface. Key features
for authors include the following:

• authors can add views to a web page using a simple
procedure;

• authors can add links or controls for manipulating the views
(e.g., selecting subsets, setting sort order);

• authors can configure options for the views, including data
used, which variables to display, and an initial state for each
view;

• authors can easily link views together while the system
automatically takes care of technical details such as sharing
data.

Overview. In Section 2, we describe LiveDoc benefits to the
reader, followed by a discussion of benefits to the author in
Section 3. We then present details about the core LiveDoc
components in Section 4. In Section 5, we provide a sample
scenario using LiveDocs to present some results from the analysis
of some sports data on truck racing. In Section 6, we discuss some
related work and in Section 7, we summarize our conclusions and
describe some future work. Finally, we include technical details
about authoring LiveDocs in the Appendix.

2. AN EFFECTIVE, APPROACHABLE USER
INTERFACE FOR READING LIVEDOCS
In this section, we review LiveDoc readers’ needs as summarized
in the introduction and present our approach to addressing these
needs.

2.1 Easy Access to Key Results in Context
Ideally, readers should be able to review the core content and
results presented in a LiveDoc with very little, if any, more effort
than that required to read a static document. In our experience of
writing LiveDocs to be viewed by users who are not experts in
visualization techniques, we have found this to be especially true.
Most such users tend to be more interested in seeing the key
results upfront rather than having to learn how to explore in order
to get to the desired findings. In our approach, we address these
needs through applet initialization parameters and scriptable user
interactions.

The applet initialization parameters allow authors to set the initial
state of a view rather than presenting a view in some default state.
For example, rather than presenting a set of linked views in a

default state where all data items are selected, we may set the
initial state to highlight a data subset of interest. In this way, the
initial state can be used to automatically present and emphasize an
interesting result upfront, without requiring interactions from the
user.

Scriptable user interactions allow authors to provide simple links
or control widgets to the readers. Such scripts have the following
key advantages:

• they provide readers with quick access to other states of a set of
views, thus enabling them to focus on various results and
perspectives that a set of views can provide rather than on the
mechanisms on how to get to a particular state,

• they free authors from having to explain how to accomplish
various user interactions,

• they enable authors to provide a series of user interactions in a
single script.

For example, consider the case where the author wants readers to
sort a bar chart by size and select the top three bars in the view. If
authors could not script user interactions, they might need to
include instructions such as “To select the top three bars, first
click the right mouse button in the bar chart to access the
submenu and select ‘Sort by Count’ to order the bar chart by
height. Then, use the left mouse button to select the top three bars
in the chart.” Through scripting, authors can reduce their text to
“Looking at the top three bars, we see that….” In this latter case,
“top three bars” is a link (href in HTML lingo) to the script for
sorting the bar chart and selecting the top three bars. Note how the
scriptable version provides access to user interactions in context.

2.2 Simple Views and Reduced Wait Time
If readers are faced with unbearable wait times or overwhelmed
with overly complex interfaces, they are less likely to adopt the
LiveDoc approach to interactive visualization in context. We
reduce the overhead cost of accessing the online document and
related data by focusing on simple, smaller views. We also only
download the data required for the specified view rather than the
whole data set. We reduce readers’ learning time for interacting
with views by avoiding overly complex views, again focusing on
simple and familiar views, and also providing scriptable links and
control widgets that authors can set in context.

2.3 Interactively Exploring Results
The real power of a LiveDoc, however, is to go beyond static
documents and support users in exploring the underlying data on
their own. We improve the analytic power of the online document
by providing a framework in which authors can compose a
presentation of results from a set of views (i.e., select which ones
they want) and easily link these views together (views are linked if
user’s selection in one view automatically propagates the
corresponding selection to all other linked views.) Even a simple
bar chart view and dynamic table, when linked together or to
other views, can add power to a presentation (e.g., see Section
5.1).

Interested readers may explore the data using all of the features of
the linked views to conduct their own independent investigations
of the presented data and, possibly, arrive at their own
conclusions that are more relevant to the reader and may be
different from the ones presented by the authors.

3. AN EFFICIENT, EXTENSIBLE
FRAMEWORK FOR AUTHORING LIVEDOCS
3.1 Linkable InfoVis View Components
Our framework for creating LiveDocs provides authors with a set
of simple, configurable, and linkable infoVis views which authors
can easily add to a web page through a standard applet interface.
This approach relieves authors from the burden of programming
each view by hand and supports them in creating LiveDocs with
some of the effective and accessible features described in the
previous section. Authors can simply pick and choose the
appropriate views for their data and tailor them through author-
configurable options to meet their needs.

3.2 JavaScript Library of Common Functions
In addition to linking, we provide a public command-type
interface to the views to emulate all GUI interactions. This
interface may be used to script the initial state of the views or to
provide alternatives to a GUI, e.g., speech interface.

We also include a JavaScript library of common functions so
authors can easily add calls to these JavaScript functions to
simulate GUI interaction. For example, we provide functions for
sorting bar charts and dynamic tables, selecting data within any of
the views, and animating selection within bar charts. Readers may
choose to record a sequence of interactions to be later replayed to
create a customized version of the document.

3.3 An Extensible Framework
While the framework provides an efficient approach to authoring
LiveDocs, it can also be easily extended to accommodate new
views. More specifically, linking between existing views is
handled through a form of publisher-subscriber methods. This
means that any new view developed within the bounds of the
linking model can then be added and linked to any existing views
without requiring the modification or recompilation of any of the
existing views. Thus, LiveDoc authors can use their own new
views or combine our views with existing domain-specific views,
providing more powerful analysis capabilities.

4. CORE LIVEDOC COMPONENTS
The current core set of LiveDoc components includes three basic
types of views (bar chart, smoothed histogram, and dynamic
tables). Each of these is described in more detail below.

Bar Chart. LiveDoc bar charts are used to indicate the number of
cases (i.e., frequency distribution) for each value of a categorical
variable. Linking a bar chart to other views provides added
analytical power. Clicking on one or more of the bars allows users
to select subsets of cases in all linked views. If another linked
component, for example a table or another bar chart, is used to
select a subset, each bar is partially highlighted according to the
fraction of cases in that bar have been selected.

Smoothed Histogram‡. While LiveDoc bar charts are used to show
the frequency distribution of categorical variables, we use the

‡ While bar charts are useful when variables take on a small

number of values which might not have an obvious order,
smoothed histograms are better for working with variables
for which interesting subsets are generally continuous

term “histogram” to describe a smoothed distribution of
continuous variables. Selection within a histogram is very similar
to the bar chart—users can select values via direct manipulation
and selections made in other linked views are reflected through
corresponding partial highlighting within the histogram.

Dynamic Tables. The LiveDoc dynamic table is modeled after the
Table Lens [10] and provides a spreadsheet-like view of the data.
Each column within a dynamic table contains a variable which is
measured on each of the cases shown in the rows. The table
allows panning and zooming, so that subsets of the cases can be
hidden from view. Each column of numerical data is displayed
using a collection of horizontal bars, one bar per cell, where the
length of a bar is proportional to the numerical value of its cell.
This allows the user to see trends across rows and relationships
among columns. If the user has zoomed in far enough, the
numeric values of the variables are also printed in the table (e.g.,
see Figure 1). Users can select subsets of cases via the mouse
(after doing so, the selected rows appear in yellow, shown as light
gray in this paper). By clicking on a column heading, the user
selects the variable in that column.

HTML Links and Controls. Since we support the use of HTML
and JavaScript for scripting interactions to the view(s), we enable
authors to include any of the standard control widgets available
through HTML: check box button, radio button, input box, or
drop-down choice menu. In addition, users can attach a JavaScript
function call directly to an HTML link. Examples of our LiveDoc
JavaScript functions are described above in Section 3.2 and
sample JavaScript links and control widgets are presented in our
sample LiveDocs described in the next section.

Implementation. All LiveDoc components have been implemented
as Java 1.0 applets. The components have not been ported to later
versions of Java due to the constraint that many of our target
LiveDoc readers are running web browsers that only support Java
1.0. The JavaScript controls access applets by invoking their
public methods. This is referred to as LiveConnect in the
Netscape browser and it works identically in another popular
browser made by Microsoft.

5. REAL-LIFE SCENARIO
We illustrate our LiveDocs approach through a real-life scenario
about the analysis of sports data on truck racing. The Craftsman
Truck Series is one of the National Association of Stock Car Auto
Racing’s (NASCAR®) top racing series. The vehicles look
roughly like commercially available pickup trucks but contain 700
horsepower engines and reach speeds in excess of 180 miles per
hour on some tracks. The 1999 season consisted of 25 races, with
approximately 35 drivers participating in each, and with a total of
120 drivers appearing in at least one race. Race data are
interesting in that they arise from interactions between two
groups: drivers and races. We obtained the data from NASCAR’s
web site, www.nascar.com. Information is also available through
www.sears.com/craftsman.

ranges. Potential interactions with these histograms
include changing the amount of smoothness; they are
constructed using an Epanechnikov kernel.

Figure 1. Excerpts from two LiveDocs on the 1999 NASCAR® Truck Racing Season. The web page on the left
summarizes information about individual drivers, while the web page on the right examines data characterizing the
races.

In the remainder of this section, we present some sample
LiveDocs for analyzing the truck racing data described above. We
present an excerpt from the static version of the LiveDoc exactly
as it appears in the browser window (e.g., see Figures 1-2),
discuss ways the user may interact with the infoVis components
embedded within the LiveDoc and finally, describe how to
compose such a LiveDoc.

5.1 Example 1: Overview of Drivers and Races
Figure 1 contains two LiveDocs, one which focuses on the
drivers, and one which shows details about races. The first
document includes a dynamic table containing information about
the drivers such as their position in the season points standings,
their truck manufacturer, and summary information about race
results such as numbers of top ten finishes and total prize money.
The dynamic table is linked to and followed by three additional
views—a bar chart of drivers’ number of wins, a smoothed
histogram of drivers’ prize money, and a bar chart of truck
manufacturers.

The second document in Figure 1 focuses on the study of the
truck races included in the 1999 season. Bar charts categorize the
races by the track type (long or short oval or road course) and race
winner. Smoothed histograms display distributions of angle of
banking of the track, track length in miles and the speed of the
track, as measured by the best time by drivers in qualifying. A
dynamic table (in the lower right-hand corner of the six views)
contains a single column listing information about race dates.

Potential User Interactions
In the first document of Figure 1, the dynamic table initially
displays only the top several drivers, but the text encourages the
reader to zoom and scroll, e.g. to locate the two drivers who drove
in only a few races but won one. The supporting views are useful
for highlighting subsets of the data so that the reader can restrict

attention to these subsets when viewing the dynamic table. For
example, in the document shown on the left of Figure 1, the
reader has selected drivers with zero wins in order to study how
high in the standings it is possible to finish without the benefit of
a win. The document also contains JavaScript controls (e.g.,
Select 0 wins) that the reader can click on to follow analyses
recommended by the author. These controls are conveniently
located within the text explaining their usage and in close
proximity to the view itself.

Readers can also easily view the drivers with the most prize
money by interacting with the “total winnings” histogram or the
neighboring JavaScript control. This helps point out some
surprising nonmonotonicities: e.g. the seventh place driver won
almost as much as the champion by virtue of having won a
$100,000 bonus in the 100th Craftsman truck race. This overview
page contains a link to a page with more detailed information in
drivers’ race results. Finally, the manufacturer bar chart can be
used to compare manufacturers: for instance, relatively few
drivers use Dodge trucks, but a high percentage of Dodge drivers
are successful.

The second document of Figure 1 displays details about the races.
This document demonstrates some ways in which JavaScript
controls can enable exploratory analysis with minimal user
interaction through animation: when the user clicks on animate
track type, the control loops over the bars in the track type bar
chart, selecting each in turn, and propagating the selection to the
other linked views, so that the reader sees characteristics of each
track type in turn. The text below recommends comparing the
races won by the three drivers who won at least three races: while
the three did not differ in preferred speed or track length, Greg
Biffle seemed to prefer the flattest (least banked) tracks, Jack
Sprague was best at driving at a severe angle, while Dennis Setzer
had most moderate tastes.

Creating the LiveDoc Example
In this section, we provide some technical details on creating the
first sample LiveDoc of Figure 1. Excerpts of the HTML source
for the LiveDoc web page are given below. It starts with HTML
headers (containing definitions of relevant JavaScript functions),
continues with the presentation text and includes controls in the
form of links and views included via applet tags. While we
provide general details describing how to author a LiveDoc in the
Appendix, we explain some of the specifics of this example
below. Due to space limitations, we do not include the full HTML
source for the document, but rather highlight key examples and
omit redundant text.

The first control, provided as a link in the text above the dynamic
table, is a link that allows the reader to scroll down within the
dynamic table:

down

The “javascript:” type tells that the link contains JavaScript code,
“doCommand” is a utility function that invokes public method
“doCommand” of an applet “driverlist”. The first argument is the
command to be executed by the applet.

The fifth control (i.e., the one for Select 9 wins) is also a link:

<a href="javascript:doCommand(’REPLACESELECT ORDER SMALLEST','wins’)
">Select 9 wins.

It selects the bar on the left that contains drivers who won nine
races.

The first applet tag describes the Dynamic Table view:

<applet name=driverlist code=spr.views.DTable.class width=700 height=250>
<param name=url value="drivers.txt">
<param name="Variable"
value="Standings,Driver,Truck#,Mfr,TotalPts,Starts,Wins,Top5,Top10,Total$">
<param name=”SortBy” value=”Standings”>
</applet>

Figure 2. A LiveDoc on detailed information from the 1999 NASCAR® Truck Racing data.

The “url” parameter specifies a URL for the data to be
displayed in the table. The “Variable” parameter lists the
variables to be displayed in the table. The last parameter
indicates that the table will initially be sorted by the column
named “Standings”.
The second applet is a bar chart of number of wins:

<applet name=wins code=ldoc.BarApplet.class width=175 height=130>
<param name=url value="drivers.txt">
<param name=”Variable” value=”Wins”>
</applet>

5.2 EXAMPLE 2: Relationship between
Qualifying and Final Results
The next LiveDoc was designed to investigate the drivers’ results
and qualifying performance in greater detail. The top table
contains brief summary information about the drivers and can be
used to select subsets of drivers to highlight the two bar charts
below. The two bar charts contain finishing position and
qualifying position information (qualifying consists of a single
solo lap around the track by each driver and determines the order
in which drivers start the race). By selecting a single driver (e.g.,
Biffle, as shown in Figure 2) one sees distributions of his
qualifying and finishing positions. By selecting the top several
drivers on the top list, one can investigate the hypothesis that top
drivers tend to qualify better than they finish, since more
uncontrollable events occur in the course of an entire race.

Also, one can study the effect of starting position on finishing
position. There is naturally a trend in which faster qualifiers tend
to finish better, but a surprising result appears when the user
clicks the JavaScript control to animate the qualifying results.
The distributions of finishing position for drivers that start in
given positions appear to oscillate back and forth, with odd
numbered starting positions being more favorable. Odd and even
positions differ because the race begins with the drivers in two
files, with the odd numbered qualifiers on the inside of the track.
Furthermore, if we select the winners, we see that one driver
managed to win, even when starting at the 26th position (in the
qualifying results chart). By selecting the 26th position in
“intersect” mode (using shift-click, or “INTERSECTSELECT”
command), we can immediately identify the driver who managed
to accomplish that task.

6. LIVEDOC USAGE AND OTHER
APPLICATIONS
The LiveDoc framework has evolved over the past couple of
years, primarily through its use in a project focusing on
understanding and tracking the development of large software
systems. Over 100 LiveDocs were created as part of this project
(in this paper we present only examples with nonconfidential
sports data). These LiveDocs were used to facilitate collaboration
among researchers on the project, as well as to disseminate results
to researchers inside and outside of the project. In addition,
LiveDocs containing summary information of key results were
presented to middle- and upper- management of the software
development departments being studied. The results provided
managers with feedback on how the software of their department
had evolved over time as well as hints to how they might
restructure their code or their organizations to improve the
software engineering process.

The early version of our LiveDocs framework did not allow
authors to set the initial state of LiveDoc view components. When
readers reviewed these older LiveDoc web pages, they could read
about key results, but they were presented with visual results that
did not initially highlight or match the textual description of
results. This was particularly problematic for managers, who often
did not have time to interactively select or explore the data on
their own. This user feedback led to the additional applet
parameter for setting a view’s initial state. The ability to set the
initial state of the view applets allows us to present key results
upfront while still preserving the ability to let users explore the
data on their own (and in context), if they are inclined to do so.

Earlier versions of our LiveDocs framework also included control
widgets as separate Java applets rather than as JavaScript
components. While the concept and functionality of the Java
applet and JavaScript control widgets are very similar, the use of
JavaScript has the added advantages of smaller size and greater
extensibility. That is, with the use of JavaScript, readers do not
have to wait while extra applets are being loaded, and authors do
not have to program new controls in Java when a new view or
functionality is added. The move to JavaScript necessitated the
introduction of a simple language to script the views (since
JavaSript can pass strings to Java methods, but cannot directly
create Java objects). Such a language can be used to script
arbitrary user interactions and to provide an alternative to a GUI
interface.

The use of LiveDocs within the above project on analyzing large
software systems also led to the addition of new LiveDoc views
that were tailored to particular problem domains. They included
geographic and abstract layouts and views to display software
code and changes. Most of the applications, however, did not
require construction of additional domain specific views.

In addition to the LiveDocs for presenting the analysis of truck
racing data (Section 5) and the LiveDocs for characterizing large
software systems described above, we have also applied the
LiveDocs approach to the analysis of organizational data and to a
case study of the Ty Company’s success with the Beanie Baby
collectible toys.

In the future, we plan to provide a new, direct-manipulation
interface for authoring LiveDocs. This will be done within the
context of a larger project referred to as InfoStill (short for
information distillery; see [14] for more details). In the InfoStill
framework, authors will have a GUI interface for creating
LiveDocs and the HTML, including applet tags, will be
automatically generated for them.

7. RELATED WORK
Commercial or free Java applets of simple charts such as bar
charts, pie charts, etc. are available today (e.g., [7]). Such charts
have the advantage of dynamically displaying the latest version of
data, allowing authors to include simple charts without having to
program them by hand, while appearing like a typical static
document and thus easily accessible to readers. Although some of
these charts support some user interaction, such interaction is
typically very limited (e.g., panning in 2-D charts, rotating of 3-D
bar charts). Also, to our knowledge, none of these existing applets
support linking between views and thus lack the analytical
capability that is available through LiveDocs. That is, the power
of the LiveDocs approach is that it provides both access to simple

views and support for conducting sophisticated analysis through
data exploration within a linked views paradigm.

As mentioned in the introduction, more sophisticated web-based
infoVis applets are becoming available for visualizing and
exploring data such as financial or geographical data [11], [9].
Unfortunately, these more complex visualizations tend to be
tailored to a particular domain and/or are larger in size. Thus,
while such views may provide unique analysis capabilities, they
do so at the expense of requiring users to learn a new interface.

Much of the research conducted within the infoVis community
has focused on creating new visualizations or interfaces to
visualizations to support users in accessing or analyzing data via
direct manipulation (e.g., [1], [3]). While some attention has been
given to the problem of automating the presentation or
construction of appropriate visualizations (e.g., [8]), such work
has not taken the notion of visualization in context (e.g., with
textual descriptions or annotations) into consideration. Previous
work on analyzing the types of tasks users conduct during data
analysis through infoVis indicates that users consider
presentation-related tasks (i.e., creating and describing a
presentation of results) to be both important and time-consuming
[6]. Our LiveDocs approach is designed to support authors in
easily creating and customizing such presentations of results in
context, while still providing interactivity to enable readers to
easily investigate claims made by the authors.

8. CONCLUSION
In this paper, we presented our current LiveDocs framework for
providing a simple yet powerful information visualization
platform targeted to users that have limited to moderate
motivation to use sophisticated visualization systems.

The framework is based on a set of visualization components that
are used to compose domain specific Web pages via simple
HTML authoring. The parameters of the components allow
authors to specify linking among the components, and to initialize
and customize the set of controls for the component.

We illustrated our framework through actual LiveDoc examples
applied to real-life sports data. Our examples illustrate how
setting the initial state of LiveDoc components provides visual
support in presenting key data analysis results; linked interactive
views allow readers to further confirm and explore results on their
own; and author-scripted interactions presented in context, engage
the reader and minimize the learning effort.

9. ACKNOWLEDGMENTS
This research was supported in part by National Science
Foundation grants SBR-9529926 and DMS-9208758 to the
National Institute of Statistical Sciences.

10. REFERENCES
[1] Ahlberg, C. and B. Shneiderman. (1994). “Visual

Information Seeking: Tight Coupling of Dynamic
Query Filters with Starfield Displays.” In CHI’94
Conference Proceedings. New York, NY: ACM
Press, 313-317.

[2] Appelt, W., Hinrichs, E. and G. Woetzel. (1998).
“Effectiveness and efficiency: the need for
tailorable user interfaces on the Web.” In

WWW’98 Conference Proceedings.
[3] Carlis, J.V. and Konstan, J.A. (1998). “Interactive

Visualization of Serial Periodic Data.” In UIST’98
Conference Proceedings. New York, NY: ACM
Press, 29-38.

[4] Eick, S.G., Mockus, A., Graves, T.L. and A.F.
Karr. (1998). A Web Laboratory for Software
Data Analysis. In World Wide Web, 1(2), 55-60.

[5] Fischer, G. and Girgensohn, A. (1990). “End-user
modifiability in design environments.” In CHI’90
Conference Proceedings. New York, NY: ACM
Press, 183-192.

[6] Hibino, S. (1999). “Task Analysis for Information
Visualization.” In Third International Conference
on Visual Information Systems (VISual’99).
(Huijsmans, D.P. and A.W.M. Smeulders, Eds.).
Berlin: Springer-Verlag, 139-146.

[7] KL Group Inc. (1999). JClass Java Components.
http://www.KLGroup.com/

[8] Kolojejchick, J., Roth, S.F., Lucas, P. (1997).
“Information Appliances and Tools in Visage.”
IEEE Computer Graphics and Applications,
July/August, 31-41

[9] Professional Geo Systems. (1999). LAVA GIS
Browser. http://www.pgs.nl/

[10] Rao, R. and S.K. Card. (1994). “Table Lens:
Merging Graphical and Symbolic Representations
in an Interactive Focus Plus Context Visualization
for Tabular Information.” In CHI’94 Conference
Proceedings. New York, NY: ACM Press, 318-
322.

[11] SmartMoney.com (1999). SmartMoney’s Map of
the Market.
http://www.smartmoney.com/marketmap

[12] Tufte, E. R. (1983). The Visual Display of
Quantitative Information. Cheshire, CT: Graphics
Press.

[13] Wills, G.J. (1999). “Natural Selection: Interactive
Subset Creation.” Journal of Computational and
Graphical Statistics. To appear.

[14] Cox, K., Hibino, S., Hong, L., Mockus, A., and
Wills, G. (1999). “InfoStill: A Task Oriented
Framework for Analyzing Data through
Information Visualization”. Proc. IEEE
Information Visualization Symposium Late
Breaking Hot Topics, pages 19-22, October 1999.

APPENDIX: AUTHORING LIVEDOCS
The technology for composing a live document is in many ways
similar to the technology for creating a regular presentation or
report. A favorite word processor or HTML editor may be used to
create the text and format the presentation. The illustrations (at
this point, dummy images corresponding to the initial state of our
interactive views) can be placed in the appropriate places within
the document. Once that is completed, the document can be
exported to HTML format, if necessary, and the dummy
illustrations and controls can be replaced by the actual views. A
significant departure from creating a regular document is the

necessity to decide which interactions with which views to
provide to readers and where to place the appropriate controls.

Our base prototype collection includes Bar Chart, Histogram, and
Dynamic Table views. When adding a view to a LiveDoc, authors
must specify the type of view and data source parameters and may
optionally set an initial state of the view and information for
linking views together. The table below describes the different
types of view configurations. The parameters for the applet tag
are specified in name/value pairs. Both the name and the value are
strings of text.

If the views share the same string in the url parameter, those
views are linked together in the sense that when the user
highlights a subset in one view, it is automatically highlighted in
another view. Also, views that have a common url parameter do
share the same data, thereby reducing the download time of the
presentation. The Join parameter allows linking of data from
two data sources by specifying variables to match in the two
sources.

The command language represents a string based alternative to
user GUI interactions. It includes commands for panning and
zooming, selection of subsets, sorting columns or bars, and
finding a subset of records with specified values.

Table A1. View Parameters.

Parameter Effect

Data Source

url

Show

Variable

set the data source

select a subset of data records to view

identify which data fields to show

Initial State

SortBy

Highlight

Transform

Show Policy

doCommand

set sort criteria for the initial state

highlight a subset of the data

control visual representation of the data

display all case or only selected cases

execute a command that changes the state of
the view

Linking Views

Join link views from different data sources

