
MMVIS: Design and Implementation
of a MultiMedia Visual Information Seeking Environment

Stacie Hibino
EECS Dept., Software Systems Research Lab

The University of Michigan, 1301 Beal Avenue
Ann Arbor, MI 48109-2122 USA

hibino@ eecs.umich.edu

ABSTRACT. In our new paradigm for video analysis, we
advocate the use of interactive visualizations where users
can browse video data in search of temporal trends by
specifying temporal queries via direct manipulation. In this
paper, we describe the design and implementation of our
MultiMedia Visual Information Seeking (MMVIS) system
that successfully realizes this exploratory approach to
temporal analysis. We present our design goals and
decisions, including the design specifications of our subset
selection query interface, our direct manipulation temporal
visual query language (TVQL), and our temporal
visualization (TViz) of results. We also present our
strategies for implementing MMVIS—focusing in
particular on our overall system architecture and the TVQL
query processor. Finally, we briefly review a case study
using real CSCW data and preliminary results of a user
study, used to validate the utility of TVQL and MMVIS.

KEYWORDS
Interactive visualizations, video analysis, temporal visual
query language, multimedia system design.

1. INTRODUCTION
Previous approaches to video analysis have emphasized
video annotation and coding over sophisticated analysis
techniques (e.g., [6, 10, 21]). That is, by providing tools
to simplify the process of creating annotations and more
importantly for consistently coding relationships between
objects or events in the data, these researchers have reduced
the analysis process to specifying selection-type queries
over the pre-coded data. For example, in a video of a design
meeting setting, researchers could use previous video
analysis systems to annotate all occurrences when “P1 is
digressing.” Then, to find out how often P1 is digressing,
they can pose the query, “Select annotations where
person=Pl A action=digressing” and then count the number
of results they retrieve. The problem with such an
approach is that 1) it requires users to code relationships a

tnis work was completedwhile author was at the University of
Michigan.

Permissionto makedigitalfhardcopiesof all or prIrtof thk materialfor
personalor classroomuseis grantedwhhoutfeeprovidedthatthecopies
arenotmadeor distributedfor profit or commercial advantage, the copy-
right notice, the title of the publication and ita date appear, and notice ia
given that copyright is hy permission of the ACM, lnc. To copy otherwise,
to republish,to postonserversor to redistributeto tists,requiresspecific
permission and/or fee.
ACM Multimedia 96, Boston MA USA
@199fj ACM 0.89791-871.1/96/11 ..$3.50

Elke A. Rundensteinerf

Computer Science Department
Worcester Polytechnic Institute, 100 Institute Rd.

Worcester, MA 01609-2280 USA
rundenst @ cs. wpi.edu

priori, limiting analysis to the pre-coded relationships and
2) it can be difficult to abstract related temporal information
(e.g., it could be cumbersome for users to find out how
often P1 starts or ends a digression).

In contrast to these approaches, we propose a new paradigm
for video analysis involving the use of interactive
visualizations in which users browse the data in search of
temporal trends. Rather than requiring users to pre-code
relationships, we have simplified the annotation process to
that of coding atomic actions and events. Our system then
enhances the analysis process by allowing users to explore
temporal relationships between subsets of such annotations
using simple mouse manipulations. For this, we have
developed a temporal visual query language (TVQL [13]–-
seereview in Section 2.3) composed of integrated temporal
query filters that support the specification of complex
temporal queries using a direct manipulation paradigm.
TVQL facilitates temporal exploration of the video data by
allowing users to continuously specify and incrementally
refine individual as well as combinations of similar
temporal relationships. Thus, in our approach, users would
code “PI Talking” and “Digression” as separateannotations.
Using our dynamic temporal query filters, they could then
examine all types of temporal relationships between PI
talking and digressions, including how often P1 starts,
participates in, or ends a digression.

In our MMVIS system, the results of TVQL queries are
presented in a temporal visualization, called TViz (Section
2.4). The visualization presents the temporal relationships
between subsets by abstracting relationships between
individual event instances into trends over a given the
interval. Some of the abstraction strategies we have
explored include frequency counts, total duration, and
average duration. The visualization is user-customizable on-
the-fly, allowing users to highlight subsets according to
their current focus of temporal analysis. In addition, our
temporal visualization is dynamically updated as temporal
filters are adjusted. This provides immediate feedback oln
temporal trends as a function of the type of temporal
relationship (e.g., “does Joe always interrupt Mary the
moment she starts talking” versus “does Joe interrupt Mary
only after she has been talking continuously for at least five
minutes?”) or as a function of the type of selected event
subsets (e.g., “does Joe interrupt only the female members
of the meeting who are speaking for more than five minutes
and not the male members?’).

75

The combination of specialized query filters and
visualizations forms our integrated MultiMedia Visual
Information Seeking (MMVIS) environment. In this paper,
we describe the design and implementation of our MMVIS
system. We present the system design of primary interface
components of MMVIS—namely, our visual query
language including the subset query and TVQL query
palettes and our temporal visualization, TViz. We also
present our strategies for implementing MMVIS, focusing
in particular on our overall system architecture and on the
TVQL query processor. In order to preserve the notion of
interactive browsing for trend analysis, the visual queries
must be processed as efficiently as possible. Thus, the
query processor is a critical component of the system and
hence we discuss it in more depth in this paper,

We describe a new index structure (the k-Array method) and
an associated query processing strategy we have developed
for processing TVQL queries. Our prelimimuy experimental
evaluation of the query processor reported in this paper
demonstrates the effectiveness of our index strategy for
handling multidimensional range queries specified in an
incremental fashion—the main mode of interaction with
MMVIS. Lastly, a brief report on our case study using real
CSCW data and preliminary results from a user study
illustrate the utility of TVQL and MMVIS.

This paper is divided into five additional sections. In
Section 2, we present our system design-describing subset
query palettes for dynamic subset selection, reviewing our
temporal visual query language (TVQL), and presenting our
temporal visualization (TViz). In Section 3, we describe
our system implementation, beginning with the system
architecture, presenting our annotation model, and
discussing the underlying query processing technique, This
is followed by evaluation and discussion of the efficiency
and utility of our approach in Section 4. In Section 5, we
discuss related work, and finally in Section 6, we present
our conclusions,

2. SYSTEM DESIGN

2.1 System Requirements:
A New Visual Paradigm for Video Analysis

TIM goal of MMVIS is to provide a new paradigm for video
analysis—one in which users can temporally and
continuously explore data in search of temporal
relationships and trends. In this new paradigm, users
should be able to use the following process:
1, Select two subsets of the video data.
2. Query for temporal relationships between subsets via

specialized temporal query filters.
3. Review a visualization of results for temporal trends.
4. Customize visualization for further clarification, if

desired, and go to 3.
5. Go to 2 to incrementally adjust relative temporal query

or go to 1 to select new subsets.

In designing MMVIS, we chose to realize this new
paradigm for video analysis by extending existing work in

Visual Information Seeking (VIS) [2]. In VIS, users can
browse a database of information through direct
manipulation of buttons and sliders. These buttons and
sliders represent query filters with which users can select a
range of desired values for each attribute of the database.
For example, in a real estate application [2], users may
wish to select all houses with two to four bedrooms that
cost between $lOOK and $300K. If they had a slider for the
number of bedrooms and another slider for the cost, then
they could use simple mouse moves to adjust these sliders
to specify the desired raages for each attribute, The sliders
act as query filters to the data and are dynamic in that a
visualization of results is dynamically updated as users
adjust each filter. In addition, the filters are dynamically
linked to one another to prevent invalid queries, For
example, if users only wanted to spend $250K and the
largest $250K house only had 3BR, then when users adjust
the cost query filter to reduce the cost, the number of
bedrooms filter would automatically be updated to reduce
the largest number of bedrooms to 3BR. This indicates that
all four bedroom houses cost more than $250K.

This use of dynamic query (DQ) filters provides us with an
easy-to-use visual paradigm for formulating and posing
questions. Because a visualization of results is dynamically
updated as users adjust any query filter, queries are
incrementally specified and refined and users see the direct
correlation between adjusting values of query parameters and
the corresponding display of results.

Another system requirement for MMVIS is that it should
be general enough to handle a variety of multimedia data
typically characterized by dynamic, spatio-temporal
characteristics (e.g., video, real-time data, etc.). We
accomplish this by using annotations to abstract spatio-
temporal information from the original media and then
analyzing the annotation collection. In the context of this
paper, we explain this approach using video data as an
example. Section 3.2 describes our data model for these
video annotations.

Although the VIS paradigm is suitable for our goals, the
current VIS framework is not designed for selecting
multiple subsets nor for handling spatio-temporal
characteristics of multimedia data, Thus, in order for
MMVIS to support the desired new paradigm for video
analysis, several extensions to VIS are required:
● subset query palettes with multi-selection list filters for

specifying multiple subsets of different types of events
(e.g., Subset A = “all person PI talking events” and
Subset B = “all person P2 talking events”),

● specialized temporal query jilters (i.e., a temporal visual
query language (TVQL [13])—Section 2.3) for exploring
temporal relationships between the subsets formed, and

● user-customizable spatio-temporal visualizations (e.g.,
TViz—Section 2.4) for highlighting the occurrence of
the selected subsets and frequency of specified
relationships.

The design of each of these components is described in
more detail in the remainder of this section.

76

2.2 Selecting Multiple Subsets
In MMVIS, each annotation (i.e., event in the database) is
typically characterized by name, action, receiver, and
category. Thus, in order for users to select a subset, they
need to be able to select from these alphanumeric
characteristics. Although alphasliders [1] could have been
used to dynamically select singleton items from each
attribute, this would have prohibited the selection of several
items for any given attribute domain. The requirements for
subset selection then are to support
● selection of multiple items for any attribute domain,
● consistency in the dynamic query interface:

- query filtering via direct manipulation,
- dynamic updating of the display as users manipulate

any query filter,
- dynamic updating of other query filters to indicate

interrelationships between attributes, and
● concurrent selection of multiple subsets.

In designing a solution to multiple subset selection, we
chose to provide a separate subset query palette for each
subset. Each subset palette contains lists of data attributes
from which to select (see Figure 1). We developed a multi-
select list box dynamic que~filter (called an mList DQ) for
dis-/continuous selection of multiple values from attributes
with categorical (i.e., discontinuous) data. Selected items
of a list are ORed, and the results from each list are then
ANDed together.

In each rnList DQ on the subset
palette, users can simply click
on an item to toggle its
selection on and off. As in the
standard DQ filters, these mList
DQs are interrelated to one
another so that the de-/selection
of items in one mList can
automatically affect the de-
/selection of items in the other
mLists, Thus, if an item is
deselected in one mList, and an
item in another mList is only
related to that deselected item,
then it too would be deselected.
For example, in Figure 1, the
name Nil is only associated with
the actions NonVerbal and
Transcript. Since Transcript has
already been deselected,
deselecting NonVerbal from the
Action mList would auto-
matically deselect Nil from the
Name mList.

Figure 1. Sample subset
query palette.

2.3 TVQL: Temporal Visual Query Language
2.3.1 Requirements for a Temporal Qu
Given two events Al (M) and B 1 () with nonzero
duration, there are thirteen
relationships between them:

possible primitive temporal
before, meets, during, starts,

finishes, overlaps, the symmetric counterparts to these six
relationships, and the equals relationship [3]. Although
there are four pairwise relationships between temporal
starting and ending points of the events (e.g., start Al -
start B 1), only one to three of these relationships are
required to define any one temporal primitive (see Figure 2).

*tartA

%
- tartB

I <0 I I’”l-0

-8 BeNA-e”dB
Figure 2. Relationships between temporal primitives and the
four defining endpoint difference relations.

A general temporal query language must be able to specify
any one of these primitives. However, it is also desirable
to specify combinations of the primitives (e.g., to see how
often events start at the same time but may end at different
times, corresponding to combining the starts, started by,
and equals primitives). Rather than providirlg arbitrary
combinations of such relationships, we support users in
selecting similar primitives (i.e., temporal neighborhoods
[8], equivalent to selecting a series of adjacent cells such as
a row, column, or grid from Figure 2).

A set or combination of temporal relationships between
two events forms a temporal neighborhood if it consists of
relations that are path-connectable conceptual neighbors.
Two primitive temporal relationships between two events
are conceptual neighbors if a continuous change to the
events (e.g., shortening, lengthening, or moving the
duration of the events) can be used to transform either
relation to the other (without passing through an additional
primitive temporal relationship) [8]. Thus, the befo r-e
(0-. _) and meets (~) relations a rle
neighbors, because we can move the ending point of A
from before the start of B to its start without specifying any
additional primitive relationship. On the other hand, the
before (U _) and overlaps (~) relations
are not neighbors. This is because we cannot move the
ending point of A past the starting point of B without first
passing through the meets relation.

2.3.2 TVQL Design
While a formal specification of our temporal visual query
language (TVQL) can be found elsewhere [13], we review
its basic design principles here. In order to define a temporal
query interface capable of specifying any individual
primitive temporal relationship, we designed TVQL to be a
collection of four temporal query filters-one filter for each

77

of the defining endpoint difference relationships described in
Section 2.3.1 and depicted in Figure 2. More importantly,
this design also allows us to capture temporal
neighborhoods [8]. In this way, not only can users browse
for temporal relationships between two subsets, but they
can browse in a temporally continuous manner. More
specifically, our TVQL interface allows users to explore
within and between primitives as well as within and
between temporal neighborhoods. Figure 3 presents our
TVQL [13, 14], As in the standard double-thumbed slider
query filters [2], the thumbs are manipulated to select the
endpoints of a range, and a filled or open arrow thumb
indicates when the endpoint of a range is included or
excluded respectively.

Figure 3. TVQL palette. This query specifies all events of
type A that start at the same time as events of type B (and
may end before, after, or at the same time as B events).

To enhance the TVQL user interface, we have incorporated
qualitative descriptive labels along the top and side and our
dynamic temporal diagrams along the bottom of the palette.
The labels allow users to “read” the relationship specified
and the diagrams provide visual confirmation of the
temporal primitive(s) specified (though not quantitative
values as given by the filters). If subset A specified person
P1 and subset B specified all Plan design rationales, then
Figure 3 illustrates how users could ask the query “show
me how often person PI starts at the same time as a Plan
starts.” The descriptive labels can be used to “read” the top
query filter as “start A equals start B.” The relationship
between the temporal ending points is unconstrained as
indicated by the selection of all values in the second (i.e.,
endA-endB) query filter. This is also reflected in the
temporal diagram, which indicates that the end of A
(represented by a filled circle) can be before, equal to, or
after the end of B. The benefit of this direct manipulation
design is that it supports specifying particular queries as
well as browsing for temporal trends. That is, users can
simply drag DQ thumbs with no particular query in mind
and when an interesting visualization appears, they can look
at the temporal diagram to see which temporal query was
specified.

Similar to standard DQ filters, our temporal DQ filters are
bound to one another to prevent the specification of invalid

queries. As users adjust one query filter, the other filters are
automatically updated accordingly. In the case of Figure 3,
the user only has to set the filter thumbs of the top startA-
startB query filter to O. The bottom two filters are
automatically constrained as indicated.

2.4 TViz: Temporal Visualization of Results
Our first goals in designing the temporal visualization
(TViz) of results for MMVIS were to maintain the VIS
paradigm by 1) presenting the results in a visual format (in
contrast to a text-based table of numbers) and 2) tightly
coupling the visualization of results to the DQ filters. In
this way, users can see the correlation between adjusting
temporal parameters and the corresponding visualization of
temporal relationships. In addition to these goals, we
identified several other requirements for TViz:
● provide andlor preserve context as much as possible,
“ highlight temporal occurrences of members of the event

subsets (e.g., highlight relative frequency, average or
total duration of the various types of events), and

● aggregate and highlight the strength of temporal
relationships between subset members and specified by
TVQL (i.e., in contrast to timelines, where information
about temporal relationships is distributed).

These types of visualization extensions go beyond the
original VIS [2], where the results were typically displayed
as an enhanced scatterplot.

Our overall approach has been to provide a main window of
representative annotation icons for context, and to use
transparent overlays to highlight temporal occurrences (i.e.,
selected subsets) and relationships between them. In
addition, we provide some options to allow users to tailor
visualizations according to their needs and preferences.

2.4.1 The Main MMVIS Window

Figure 4. The Main MMVIS Window. This ficture shows the
main MMVIS window before any subseis have been
selected or any temporal queries have been specified.

Figure 4 presents the main MMVIS window. This window
is divided into three areas: the primary visualization area,
the key below the visualization area, and visualization
options in the lower right corner of the window. Initially,

78

the visualization area only contains icons representing the
different types of annotations in the database (in Figure 4,
icons from the CSCW case study are displayed). By
default, these annotations are spatially placed according to
their corresponding f~st occurrence in the video and are used
to provide context for TViz. Users can move icons
according to their preference. In the case study data set [20],
we found that subjects never changed positions (e.g., walk
across the screen) in the video, so there was a one-to-one
correspondence between where talking icons were placed and
where the corresponding speakers appe~ed omthe video. In
this way, the annotation placement formed a spatial
abstraction of the video context for the case study.

The key below the visualization emphasizes that subset A
events will be highlighted with yellow transparent circle
overlays while subset B events will be highlighted with
blue transparent square overlays (see also Figure 6). The
visualization options allow users to customize the view
according to their needs and preferences. More details on
the subset highlighters and visualization options are
provided below.

Figure 5 presents an example where the user has set Subset
A to all types of annotations and Subset B to none. By
doing so, the user can then switch between visualization
options to gain an overview of the data and to compare the
differences between relative frequency, average duration, or
total duration of all types of events. Figure 5 provides a
comparison based on total duration. In it, we can see, for
example, that the total time that Richard speaks is longer
than that of Carol or Gary.

2.4.3 Visualization of the Temporal Relationships
Once users have specified A and B subsets, they can then
use TVQL to specify a temporal query. As they manipulate
the TVQL filters, users see connectors between the centers
of A and B events appear and disappear, grow and shrink,
thereby indicating the existence and strength of the temporal
relationship currently specified. The base width of the
connector denotes the relative frequency that the temporal
relationship occurs. TViz is based on the visualizations
used by Olson et al for temporal sequences [20].

2.4.2 Visualization of the Selected Event Subsets
The subset selection highlighters of TViz are designed to
support users in comparing temporal occurrences of
different types of events within the context provided by the
main MMVIS window. We accomplish this by using
transparent overlays to visually indicate the current subset
as it is being de-/selected. Members of subset A are
highlighted by yellow circles, while members of subset B
are indicated by blue squares. The radius of these
transparent overlays represents either relative frequency,
average duration, or total duration, customized according to
the user’s preference.

ali starts temp”oral query, where ev”ents start at the same
time but may end at the same or different times. The A13
connectors in TViz are displayed as bars, and the width c)f
these bars indicates the relative frequency that the all
starts relationship occurs between each type of AB pair.

Figure 6 shows an example where the user has specified the
all starts temporal query, where events start at the same
time but may end at the same or different times. In this
example, the thick bar between NonVerbal and Pause
indicates that these types of events frequently start at the
same time. Similar to the overview visuahzations, th~e
temporal relationship connectors are also user-customizable,
being viewable as triangles or bars. Figure 6 shows the
view by bars.

ex~mple, Subset A is set to all types of annotations and
Subset B is set to none. Transparent circle overlays
highlight the types of A events selected. The relative size
of the circular highlighters provides a comparison of total
duration. Other viewing options include frequency and
average duration.

3. IMPLEMENTATION
3.1 System Architecture
Figure 7 presents the MMVIS system architecture,

illustrating how the design specifications described in
Section 2 are integrated with the underlying system
components, including the Database Manager. In MMVIS,
users have access to basic Annotation Tools to code the

79

original media (e.g., video) by either directly creating
annotations within the system or importing annotation
information from other, perhaps automated, systems (e.g.,
[18]). These annotations, which abstract atomic objects and
events taking place in the media, are passed through an
Annotation Processor on to the Database Manager and are
stored in an underlying database. The Annotation Processor
translates user specifications of annotation parameters into
annotation objects to be stored in the database.

Unr Inttiaco

create annotations
w!th Annotation

Tools (AT)

specty q.enes no
W3ual Que!y

Language (VOL)

%

spmlty display
preferences VIa

Pr.sentat,on

U8W Language (PL)

Vlsualuatlon

Navlgat,on
Cmtmts (NC)

Syshtn

An.otatlon I store
Processor I

Figure 7. MMVIS System Architecture.

Once the annotation collection has been formed, users can
then explore and analyze the video through iteratively
specifying queries using a Visual Query Language (VQL;
i.e., the subset selection and TVQL query palettes described
in Sections 2.2 and 2.3) and by reviewing the visualization
(e.g., TViz, Section 2.4) of results presented. In order to
maintain the notion of browsing to the users, the
visualizations must be updated in real-time and thus queries
must be processed as quickly as possible. This is
accomplished through the VQL Processor which is
described in Section 3.3, The VQL Processor sends
messages to the Database Manager which then passes
updates of the solution set to the Presentation Manager.
The Presentation Manager takes these updates of the query
results, along with any user-defined display preferences and
updates the visualization. Users can view the visualization
as it changes and visually scan the final results to look for
data trends. If no trends are found, they can use the
Presentation Language (PL) to clarify the visualization, the
Navigation Controls to further explore query results, or the
VQL to incrementally adjust the query.

MMVIS has been implemented in a Windows-based
multimedia PC environment, using a ToolBook interface to
a database library. The subset selection query palettes,
TVQL, VQL Processor, Database Manager, and a primitive
Presentation Manager for displaying and updating TViz
have all been incorporated into the current working system.
The Annotation Tools are currently limited to importing
existing databases of video events, but tools for creating
video annotations directly within the existing framework are
being developed. In addition, we are also investigating the
use of alternative visualizations to extend the collection of
Presentation Templates from which users can select.
Details of the Database Manager and our VQL query
processing strategy are presented below.

3.2 Database Manager
The Database Manager uses our annotation model to store
and retrieve information from the annotation collection.
Below, we highlight the basic characteristics and structure
of our annotation model. Recall that annotations are used
to abstract spatio-temporal and conceptual information
about objects and events taking place in the video. Figure
8 summarizes our basic annotation data model.

Zisa

temporalinfot
● start_time ● pos(X,y)
● end_time ● width

● duration ● height

● start_frame
● end_frame

)

Ax’A

● category II● modified_date [● height
● comments ● modified time

Figure 8. Overview of Annotation Data Mo(

The descriptive objects are separate from the annotations so
that several annotations can reference the same descriptive
object. This provides consistency and improves efficiency
during annotation creation by allowing users to link directly
to previously specified descriptive objects rather than
having to specify the same information over and over again.
The same is true for the relationship between the descriptive
object and the media object.

The Database Manager stores information on basic
annotation, descriptive, and media objects in a dBase IV
format while the actual views of the objects are realized
directly within the application. The t.start_frame and
t.end_frame attributes of an annotation object allow us to
obtain direct accessto the corresponding video segment.

3.3 Query Processing in MMVIS
3.3.1 Basic X/ Characteristics
The problem of processing temporal dynamic queries can be
characterized as a multidimensional range query problem in
which queries are incrementally specified. More
specifically, given a set of DQ filters, we have the
following characteristics:
● each DQ filter represents an attribute of the data set,
● each item in the data set can be placed into one and only

one slot of each DQ filter (where a DQ filter slot is an
internal representation for every unique (i.e., discrete)
position of a slider thumb),

80

● a query corresponds to using direct manipulation to
adjust and select valid attribute ranges for each DQ filter,

w an item in the data set is in the solution iff each value of
each attribute of the data item is in the selected range of
the corresponding DQ filter.

Iti the real estate scenario, for example, each house in the
database has a defined number of bedrooms and a specific
list price. A four bedroom (4BR), $300K house would be
placed into the value=4 slot of the #BRs DQ filter as well
as in the value= $300K slot of the Cost DQ filter. This
4BR, $300K house would be in the solution set iff value=4
was in the selected range of the #BRs DQ filter AND
value= $300K was in the selected range of the Cost DQ
filter, In the case of TVQL, each (~,bj) temporal pair has
one startA-startB value, one endA-endB value, etc. and can
thus be sorted into one slot of each of the corresponding
temporal query filters. A given temporal pair is then in the
solution set when each of its temporal endpoint differences
is in the selected range of each of the corresponding
temporal query filters.

3.3.2 Terms and Parameters
Before we present our approach to TVQL processing, we
first define the terms and parameters used. Let each DQ
slider be characterized by the following parameters:

minVal = minimum value of slider range
maxVa 1 = maximum value of slider range
ticVals = {ticl, ticz, . . . , ticz}

// evenly spaced slider positions
dtIncr = delta increment

II min amount you can change an endpoint
II value of a slider range when moving a
// slider thumb. (I.e., dtIncr = tici+l - tici)

slot = a DQ filter has an internal normalized slot
for every unique position of a slider thumb

slotCount = number of slots for the given filter
= (2*(maxVal - minVal)/dtIncr) + 1

Given:
v = {VI, V2, . . . , v~}

II set of video documents
Ann(vP) = {Val, Vaz, . . . , VaT}

II annotations for video VP

Users select A and B subsets via subset selection DQs:
A = {al, az, ..., ai, ..., am

I m S T, ai eAnn(vP)}
II fiist subset of video annotations

B = {bl, bz, ..., bj’.”-’ bn
I n S T, bj el+m(vp)}

II second subset of video annotations

Based on the subset selected and the constraints imposed by
extreme values of the TVQL filters, a new database of
temporal pairs (TPairs) is formed as follows:

TPairs = {Prl, Prz,..., Prq,..., PrN

I Prq=(ai, bj), al GA, bj cB,

(ai . end. - bj . start 2 dTfo .minVal

AND ai..start - bj end S dTof .maxVal) },

where:
dTf o = temporal DQ filter for specifying difference

between end of ai and the start of bj, and
dTo f = temporal DQ filter for specifying difference

between start of ai and the end of bj.

Users explore temporal relationships by using TVQL to
query the TPairs database. We define:

T = total # of records in annotation collection Ann(vp)

N = #of (ai, bj) pairs in TPairs (ST2) from which pairs
that meet temporal relationship criteria are selected

k = number of attributes or dimensions used for query
specification (for TVQL, k=4)

Figure 9 presents a sample DQ filter (mii nva 1 = -3,
maxVa 1 = 3, dt Inc r = 1) and its corresponding internal
representation. It has slotCount=2*(3 - ‘3)/1 + 1 = IL3.
There are more slots than tics because a filter thumb can be
closed or open to include or exclude an endpoint value,
respectively. In Figure 9a, the DQ filter is selecting 01<
values e 1. This corresponds to including slots 6 and 7 of
the internal representation shown in Figure 9h.

-3 0 3

Figure 9.(a) Sample DQ filter (minVal = -3, maxVal = 3,
dtlncr = 1).

Ltrhmlol 1 !-:!J;lslm-w%ll
ticvall -3

Figure 9.(b) Corresponding internal representation where
the double-lined border around slots 6 and 7 corresponds to
the selected DQ filter range in Figure 9a.

Given that each item in the TPairs data set has one and only
one valid value for each attribute, this means in TVQL that
for a given pair prq, the value of each attribute determines
the s 10 t Num of the corresponding query filter. For
example, if prq. dTo= Oand if the above filter represented
the dTo (i.e., startA-startB) query filter, then prq would go
into slot 6 of the filter. Recall that P r q is only in the
solution set when each and every one of its attribute values
are valid (i.e., when each is included in the selected range of
its corresponding attribute DQ filter). Another way to
think of this is that if count represents the number of
valid attribute values for p rq, then a temporal pair Prc[is
in the solution set when count= 4 (or, in general, when
count= k).

3.3.3 DQ Filter Manipulations
Since users incrementally specify and update queries by
directly manipulating any DQ filter thumb, an important
goal in identifying an indexing scheme would be to use cme
with efficient support for finding the “nearest neighbor”
when processing these incremental user queries. Given a
double-thumbed query filter such as those used for TVQL,

there are two types of manipulations for specifying a query:
(1) move a query filter thumb or (2) toggle the fill of a
query filter thumb from filled to unfilled and vice versa.

81

These types of manipulations can be represented as:
dqManip(dqi, thumbID, action, <dir>)

where
dqi // DQ filter being adjusted,
thumbIDG {LEFT, RIGHT}

// which DQ filter thumb was manipulated,
action= {MOVE, FILL, UNFILL}

Iltype ofmanipulation made, and
dire {LEFT, RIGHT}

// optional parameter to specify direction the
//DQthumbwasmoved, inapplicable.

Query processing in TVQL must thus be able to effectively
process such sets of manipulations. This includes
identifying items affected by the manipulation, updating
appropriate auxiliary structures such as counts, and updating
the solution set by passing information on TPairs items
that should be addedfremoved from the solution to the
Presentation Manager via the Database Manager.

3.3.4 k-Array: An Array Based Method
One of the simplest methods of indexing multidimensional
dataisto useak-dimensional matrix representation. While
such amatrixis simple to build andeasy to use, it is often
disregarded due to its high storage costs, which for dynamic
queries is on the order of 0(s 10 t Coun t ‘). Another
disadvantage of the full matrix-based approach is that in a
data set with a skewed data distribution, many buckets (e.g.,
individual tiles in the two-dimensional matrix case) will be
empty—while others will be very full. Note that the four
dimensions of our TVQL language, namely the four
temporal query filters, are highly interdependent—as
illustrated in Figure 2. This indicates that any TPairs
database may have a skewed distribution. Hence, the simple
full matrix method is not as applicable a technique for
TVQL query processing.

In order to reduce the storage required for indexing the data,
to avoid empty buckets as much as possible, and to
optimize performance, we thus set out to develop an
alternative strategy for TVQL query processing. While
several methods for processing multidimensional range
queries exist (e.g., [4, 19]), we felt that the requirements
and constraints of our TVQL query processing problem
were different enough from previous work to warrant
additional investigation. More specifically, our goal was to
identify an indexing method for processing incremental
multidimensional range queries over temporal data, giving
higher priority to processing queries over updating data.

Our proposed k-Array approach is an array-based method
generally applicable to DQ query processing—while of
course for our TVQL language we set k= 4. Given:

dBase = {iteml, itemz, . . . , iteMN}
// with unique_IDs {1, 2, N}
II for TVQL, dBase = TPairs

DQ = {dql, dqz, . . . , dqk}
// set of DQ filters

kArray
= { indexArray (dql) , i-ndexArraY (dqz) ,

. . . . indexArray (dqk) }

The basic idea is to keep an index array of size
s 10 t c oun t for each DQ filter. Each position in the
index array has a one-to-one correspondence to the
s 10 tNum of the respective DQ filter. Thus, each item in
the databasecan be sorted into one and only one position of
each index array. This means that every item in the
database occurs a total of k times in the full index structure.

If c ount is the number of selected ranges of the index
arrays in which an item occurs, then an item should be
added to the solution set when its count changes from k-
1 to k. Similarly, the item should be removed from the
solution when its count changes from k to k – 1. We
only need to accessthe actual item when it is being added to
or removed from the solution. The rest of the time (i.e.,
while count < k-1), it is sufficient to access only the
c o un t for each item. For this reason, the counts are
stored in a separate array, consecutively by item ID:

it emCounts [N] = array of data item counts

Using pointers and a main memory model, the k-Array
approach is captured by Figure 10.

indexArray
(dq,)

o 1 . . . slotCount- 1

F

In

B

20
5 27
8 32
10

dBase itemCounts

ID data
1

❑
<item>

2 citem

. . .
N <item=

ID data
1 3

2 2

. . .

N 4

figure 10. Main memo~ based k-Array approach.

In order to provide support for a fine-grained analysis of
video data (e.g., analyzing the video over events that are
only seconds or less than seconds long) andior support for
analyzing several videos at once, our system must be able
to handle a large collection of video annotations as well as
an even larger TPairs collection (given that TPairs are
formed by pairwise combinations of the video annotation
subsets). Ultimately, this means that the number of pairs
can become too large to fit in main memory, and secondary
storage would be required. For this case, we propose the
following modifications to convert the main memory-based
k-Array method into a disk-based structure:
● use indexArra ys to indicate number of item IDs in

each position (i.e., slot) rather than store a list of IDs,

82

●

●

●

●

store the list of IDs on disk, in the order in which they
occur in the i-ndexArrays,
use the minimum number of bits required to store the
it emcounts on disk (for TVQL, k= 4, so we need a
minimum of 3 bits per it emCount),
reserve sufficient buffer space to keep the
indexArrays in main memory,
reserve sufficient buffer space to keep the s 10 tNum,
page number (pageN-urn), and page o f fs e t
corresponding to the current position of each query filter
thumb in main memory.

The corresponding disk-based version of the k-Array is
presented in Figure 11.

Main Memory:

indexArray (dqi)

slotNum: O 1 . . . slotCount- 1
#of items: 4 0 . . . 3

E
LEFT. slotNum I

LEFT. pageNum 5
LEFT. offset O

RIGHT. slotNum 10
RIGHT.pageNum 5

RIGHT.offset %

On Disk:
ID data

drhse 1 <ltem--
2 <item

.,.
N <item>

itemCounts: 1 3

2 2

. . .

N 4

in&xArray(dqi): slotNum=O 1
5
8
10

. . .

slotNum=slotCount-1 20
27
32

Figure 11. Disk-based version of the k-Array approach.

Our query processing strategy for our k-Array is to process
each DQ user manipulation (i.e., dqManip) as follows:

● get the slotNum, pageNum and offset for the
thurnbID of the dq filter specified

● using the thumb ID, act i on, and dir (if specified),
determine whether the nearest neighbor to update is
dqi. thumb ID. slot Num -1 or
dql . thtiID . SlotNum+l

●

●

using the thumb ID, act i on, and dir (if specified),
determine if manipulation corresponds to expanding cr
contracting the selected attribute range
loop from 1 to slot Si ze, doing the following:
- fetch the next item ID
- fetch its count
- if removing current s 10 t from selected attribute

range, then
- update the item’s count by decrementing it
- if new count =k - 1, then fetch actual data item

and remove it from the solution set
- otherwise we are adding current s 10 t. to selected

attribute range, so:
- update its count by incrementing it
- if new count =k, then fetch actual data item

and add it to the solution set

Consider the case where the left filter thumb is unfilled, and
the query manipulation taken is dqManip (dqi, LEFT,
FILL, NULL), This corresponds to changing the left
hand side of the specified range from

leftVal < dqi .attributeName
to leftVal < dqi .attributeName,
meaning that the nearest neighbor is
dqi. LEFT. s lotNum- 1 and that we want to add that slot
to the selected range. If dq i had the corresponding
indexArray in Figure 11, where dqi. LEFT. s lotNum

= 1, then we would be adding all data items corresponding
to slot O of that indexArray to the solution. Since
indexArray (dqi) [O] = 4, then we would 100p over
the four IDS in that slot (i.e., ID=l, ID=5, ID=8,
ID= 10), incrementing the count for each, and adding to
the solution set the corresponding data item for each :[D
with a new count equal to k. Although all counts are not
displayed in Figure 11, we do see that data item ID=l has
count =3. Thus, since now k would become 4, then we
would fetch and add data it eml to the solution set.

In general, the k-Array has a storage cost on the order of
O(kN) and search cost on the order of the average slotSizc-
i.e., O(N/s 1ot Count). While this search cost may ‘not
seem to be the most efficient, it is counterbalanced by the
fact that all item IDS in as 1ot are clustered together, and
minimum information is kept to maintain and cluster the
corresponding counts. Given a 2K page buffer size, this
means that page faults in TVQL could be reduced to one
page fault per every 512 item IDs fetched from the
in dexA r r ays and one page fault per every 5461
itemCounts.

3.3.5 Processing Subset Selections
Processing subset selection queries over the annotation
collection is similar to processing TVQL queries cwer
TPairs, though much simpler. Since the annotation set is
assumed to be frozen at query time, the annotations can be
presorted by descriptive ID (d_ID). In addition, TViz only
requires information on the frequency, average duration, and
total duration for each subset of annotations with a given
descriptive ID (vs. information on individual annotations).
Thus, this information can be calculated ahead of time and

83

stored directly with the respective subset highlighter objects
(i.e., transparent yellow circle and blue square overlays).

Users manipulate the subset selection DQ filter lists to
select subsets by d_ID. De-/selecting a d_ID then
corresponds to hiding or showing the corresponding
highlighter. We use a k-Array to process these incremental
subset selection queries. Note that the k-Array supports
access to “nearest neighbor” slots (as required by
incremental selection of continuous ranges in the temporal
query filters) as well as direct access to any slot of any DQ
filter, which is desired in the case of subset selection based
on discontinuous ranges of attributes.

4. EVALUATION AND DISCUSSION
We have divided evaluation of the MMVIS environment
into two components-efficiency and usability. In Section
4,1, we present some preliminary experimental results
evaluating the efficiency of our k-Array query processing
strategy. The usability and utility of MMVIS are being
evaluated through user studies and through a case study
applying MMVIS to the analysis of real video data. In
Section 4.2, we summarize the results from our case study
as well as preliminary results from our TVQL user study.

4,1 Efficiency Evaluation: TVQL Processing
The linked array is another array-based query processing
approach to multidimensional range queries which works
well for smaller sized databases but does not scale up very
well [16]. Our k-Array was designed to improve on the
linked array method while maintaining a simple index
structure and incremental update strategy. In particular, we
were interested in improving the efficiency for working
with large data sets, where secondary storage is required. In
this section, we present preliminary results comparing
performance of the linked array with our k-Array.

4,1.1 Assumptions
We assume that once A and B subsets have been selected,
the TPairs database is formed and remains frozen. Since no
deletions, insertions or updates are made to the database,the
indexing structure is static and can be constructed based on
fore-knowledge of the data distribution. Our ultimate goal
is to process queries as quickly as possible (and updates are
assumed to be rare). Since the cost to build the index is
only done once, we do not consider the preprocessing index
creation cost in our analysis.

4.1.2 Linked Array vs. k-Array Methods
The linked array is similar to the k-Array in that data items
are sorted into slots of each of the k arrays representing each

query filter. In the linked array, however, each slot holds
the first item of a linked list of items for that slot, rather
than information for accessing the slot’s contents as one
sub-array. That is, in the linked array, rather than storing
the IDs to each item k times (as we propose for the k-Array
method), the IDs are stored along with their counts and a set
of k links, one for each next data pointer in the same slot
of each dimension. These linked array items (i.e., the
count and k next pointers) are stored sequentially on
disk according to ID and can be accessedvia page offsets.

Our proposed k-Array is an improvement over the linked
array in that item IDs in each slot are clustered together.
Figure 12 compares the number of page faults required for
using the linked array vs. the k-Array methods for
processing a sample TVQL query. The graph indicates that
the performance of the linked array degradesconsiderably for
larger data sets, while the performance of the k-Array is
fairly stable (i.e., it degrades gracefully). We have
compared our k-Array to the linked array for a series of
TVQL queries and consistently find the same result—the k-
Array outperforms the linked array, especially as the data set
size increases [11].

k-Arrayvs. Linked Array {Query 1; EMfSize=lOq pageSize= 2KJ

5874 11748 17585 23885 35846 47164

DataSet Size(# ef Pairs)

Figure 12. Number of page faults required for processing a
sample TVQL query for different data set sizes:
comparison between linked array and k-Array methods.

Figure 13 compares the performance of the two approaches
for specifying incremental vs. non-incremental queries, A
query is incremental when it is processed as an upahte to the
previous query rather than as a new query calculated from
scratch. Both methods perform better overall for
incremental queries, but the k-Array still outperforms the
linked array under both conditions.

Llbk Acceears Required for Incremental vs. Norr-lncremerdal Queries

(BufLSIZe=fOO; PweSize = 2fi N > ‘10,000)

: m k-Array
. ?.

II
:::.,.(mm-incremental)
f:; j~
,,, ,.
:5. 0 linked awry
?.;f!:::: ,, (Incremental)
:\ ,::

;4 Q linked afrw
, (mn-hwrrmntd),

W Q2 Q3 Q4 Qs

Query Number

Figure 13. Number of page faults required for processing a
series of incremental queries VS, processing the same
queries from scratch: comparison between linked array and
k-Array methods.

Our work on evaluating the TVQL Processor is ongoing
and we have recently completed enhancements to the k-
Array, converting it to a bucket-based method called the k-

84

Bucket [11]. We have compared the k-Array and k-Bucket
to the linked array and other popular indexing structures
such as the k-d tree [4, 5] and grid file [15, 19]. Thus far,
our findings indicate that although the k-Bucket is not the
most efficient under all conditions, it is the best performer
overall [11].

4.2 Usability Evaluation

4.2.1 CSCW Case Study
Our case study using the exploratory approach to video
analysis provided in MMVIS illustrates the utility of our
system and approach [12]. In the case study, we use
MMVIS to analyze real video data collected as part of a
research study on computer-supported cooperative work
(CSCW) [20]. The case study shows how our approach is
not limited to analyzing temporal sequences studied by the
original researchers, but can also be used to examine any
type of temporal relationship-parallel, overlapping, or
sequential. It also illustrates how our interactive approach
simplifies the process of discovering temporal trends.

The series of sample temporal queries in the case study, for
example, demonstrates how our tools can be used to
investigate who in the study might have emerged as the
leader of the group, even though no leader was assigned.
We proposed a number of (temporal query) questions to
investigate this and then used MMVIS to pose them and
explore the results. We looked at the frequency and average
duration of Talking events to see who talked more
frequently and who spoke for longer periods of time than
others. We examined the relationship between when
individuals spoke and when digressions took place to see
who initiated, who participated, and who ended digressions.
TViz not only highlighted this information, but also
highlighted the frequency (i.e., strength) of these temporal
relationships. The overall results of the case study led us to
some interesting observations, some of which were
desirable and expected and some of which could lead to more
in-depth analysis.

4.2.2 TVQL and MMVIS User Interface Studies
We are in the process of running a user interface study to
evaluate TVQL compared to a forms-based query interface.
While our study is not yet complete, our preliminary
findings indicate that 1) users can interpret TVQL queries,
2) users can specify temporal queries using TVQL, though
they have better qualitative than quantitative accuracy, and
3) users can easily understand the temporal diagrams and in
fact most often quote the diagrams as the most beneficial
part of the interface. Once the user interface study is
complete and it raises some suggestions for improving
TVQL, we plan to redesign TVQL to increase its usability.
In this light, our goal is to improve the interface while still
maintaining the power of the language—most notably, the
power to browse within and between both temporal
primitives and temporal neighborhoods, thereby preserving
the notion of temporal browsing.

5. RELATED WORK
Previous video annotation and analysis systems, such as
VideoNoter [21], require users to pre-code temporal
relationships rather than allowing them to discover the
relationships by coding atomic information and posing
temporal queries. Other systems, such as Media Streams
[6], have focused more on novel approaches to creating and
finding individual annotations rather than analyzing
relationships between them. While systems such as
Timelines [10] and Media Streams [6] do provide somle
query support, their visual presentations of the annotations
are restricted to text- and timeline-based displays. In
contrast, MMVIS provides a new, integrated approach to
temporal analysis where users can use a direct manipulaticm
approach, called TVQL, customized for visually browsing
for temporal relationships between events in the video data
and review an aggregated display of results in TViz.

Although other extensions to dynamic query filters and VIE
have been explored [7, 9], these extensions primarily focus
on aggregation extensions to the interface. While these
aggregation techniques could be incorporated into our
system to enhance the formation of subsets, they do not
addressthe temporal and relative exploratory needs of video
analysis.

Previous research on processing multidimensional ran,ge
queries focuses on processing queries once rather than
processing dynamic, direct manipulation queries. Hence, the
problem we are addressing is different from conventional
multidimensional range query processing in that our input
to the query processor corresponds to sets of incremental
(continuous) query updates typically generated by adjusting
one query filter at a time. Work by [16] comes closest to
our TVQL query processing approach in that they analyze
various structures for dynamic queries in general. However,
the researchers focus their attention on main memory rather
than disk-based methods. In this paper, we have presented
an array-based indexing structure customized for incremental
query processing. Advantages of our proposed strategy
include not only its simplicity in implementation but also
its efficiency of processing TVQL queries compared to
alternative approaches, such as the linked array method.

6. CONCLUSION
In this paper, we presented details on the design amd
implementation of an interactive visualization environment
for video analysis. In our MultiMedia Visual Information
Seeking (MMVIS) environment, a visual query language is
tightly integrated with a temporal visualization of results.
The environment provides a new paradigm for video
analysis, one in which users can explore temporal trends via
interactively browsing for temporal relationships. In this
paper, we presented the system design of the primary
interface components of MMVIS — namely, our visual
query language including the subset query and TVQL query
palettes and our temporal visualization TViz.

85

In order to preserve the notion of interactive browsing for
trend analysis, the visual queries must be processed as
efficiently as possible. Thus, the query processor becomes
a critical component of our system implementation. We
thus have developed and fine-tuned a novel index data
structure (called the k-Array method) and associated query
processing strategy for handling TVQL queries. Our
analysis indicates that the k-Array performs much better
than the linked array as the data set size increases, and that
it is particularly well suited to handle incrementally
specified queries — the main mode of interaction with
MMVIS.

In the future, we plan to enhance the analysis of TVQL
query processing, including a comparison of the various
alternate processing methods specified in the literature for
specifying disjunctive multidimensional range queries. We
will also continue our ongoing effort on conducting user
studies to test the usability and conceptual understanding of
the TVQL interface as well as the utility of the MMVIS
system for identifying temporal trends.

ACKNOWLEDGMENTS
This work was supported in part by UM Rackham
Fellowship, NSF NYI #94-57609, and equipment support
from AT&T. Special thanks to Judy Olson for permission
to use the sample data set.

REFERENCES
1.

2.

3.

4.

5,

6.

7.

8.

Ahlberg, C., & Shneiderman, B. (1994). The
Alphaslider: A Compact and Rapid Selector. CH1’94
Conference Proceedings. NY:ACM Press, 365-371.
Ahlberg, C., & Shneiderman, B. (1994). Visual
Information Seeking: Tight Coupling of Dynamic
Query Filters with Starfield Displays. CHI’94
Conference Proc. NY: ACM Press, 619-626.
Allen, J.F. (1983). Maintaining knowledge about
temporal intervals. CA CM, 26(11), 832-843.
Beckley, D.A., Evens, M. W., Raman, V.K. (1985).
Multikey Retrieval from K-d Trees and Quad Trees,
ACM SIGMOD Proceedings, 291-301.

Bentley, J.L. (1975). Multidimensional Binary Search
Trees Used for Associative Searching.
Communications of the ACM, 18(9), 509-517.
Davis, M. (1993). Media Streams: An Iconic
Language for Video Annotation. Telektronik 4.93:

Cyberspace, 89(4), 59-71.

Fishkin, K. and Stone, M.C. (1995). Enhanced

Dynamic Queries via Movable Filters. CHZ ’95
Conference Proceedings. NY:ACM Press,415-420.
Freksa, C. (1992). Temporal reasoning based on
semi-intervals. Artificial Intelligence, 54, 199-227.

9.

10.

11.

12.

Goldstein, J. & Roth, S. (1994). Using Aggregation
and Dynamic Queries for Exploring Large Data Sets.
CHI’94 Conference Proceedings. ACM Press, 23-29.
Harrison, B.L., Owen, R., & Baecker, R.M. (1994).
Timelines: An Interactive System for the Collection
of Visualization of Temporal Data. Proc. of Graphics

Inte~ace 94. Canadian Info. Processing Society.
Hibino, S. and Rundensteiner, E. “Processing
Incremental Multidimensional Range Queries.”
University of Michigan Tech. Report (in preparation).
Hibino, S. and Rundensteiner, E. (in press).
“Interactive Visualizations for Temporal Analysis:
Application to CSCW Multimedia Data.” To appear
in Intelligent Multimedia Information Retrieval (Mark
Maybury, Ed.).

13. Hibino, S,, and Rundensteiner, E. A. (1996). “A
Visual Multimedia Query Language for Temporal
Analysis of Video Data,” Multimedia Database

Systems: Design and Implementation Strategies (K.
Nwosu, B. Thuraisingham, and P.B. Berra, Eds.).
Norwell, MA: Kluwer Academic Publishers, 123-159.

14. Hibino, S. & Rundensteiner, E. (1995). A Visual
Query Language for Identifying Temporal Trends in
Video Data, Proc. of the 1995 International Workshop

on Multi-Media Database Management Systems. Los
Alamitos, CA: IEEE Society Press, 74-81.

15. Hinterberger, H., Meier, K.A., Gilgen, H. (1994).
Spatial Data Reallocation Based on Multidimensional
Range Queries. 228-239.

16. Jain, V. & Shneiderman, B. (1994). Data Structures
for Dynamic Queries: An Analytical and Experimental
Evaluation. Proc. of the Workshop on Advanced

Visual lnte@aces. NY: ACM, 1-11.
17. Mackay, W. E. (1989). EVA: An experimental video

annotator for symbolic analysis of video data. SZGCHZ

Bulletin, 21(2), 68-71.

18. Nagasaka, A. and Tanaka, A. (1992). Automatic
Video Indexing and Full-Video Search for Object
Appearances. Visual Database Systems, ZI (E. Knuth
and L. Wegner, Eds.). Elsevier Science Publ., 113-127.

19. Nievergelt, J. & Hinterberger H. (1984). The Grid File:
An Adaptable, Symmetric Multikey File Structure.
ACM Trans. on Database Systems, 9(l), 38-71.

20. Olson, J., Olson, G., and Meader, D. (1995). What
mix of audio and video is important for remote work.

CHI’95 Corf Proc. NY: ACM, 362-368.
21. Roschelle, J., Pea, R., & Trigg, R. (1990).

VIDEONOTER: A tool for exploratory analysis
(Research Rep. No. IRL90-0021). Palo Alto, CA:
Institute for Research on Learning.

86

